Extensions 1→N→G→Q→1 with N=C23 and Q=Dic15

Direct product G=N×Q with N=C23 and Q=Dic15
dρLabelID
C23×Dic15480C2^3xDic15480,1178

Semidirect products G=N:Q with N=C23 and Q=Dic15
extensionφ:Q→Aut NdρLabelID
C23⋊Dic15 = C2×A4⋊Dic5φ: Dic15/C10S3 ⊆ Aut C23120C2^3:Dic15480,1033
C232Dic15 = C23.7D30φ: Dic15/C15C4 ⊆ Aut C231204C2^3:2Dic15480,194
C233Dic15 = C2×C30.38D4φ: Dic15/C30C2 ⊆ Aut C23240C2^3:3Dic15480,917

Non-split extensions G=N.Q with N=C23 and Q=Dic15
extensionφ:Q→Aut NdρLabelID
C23.Dic15 = C20.S4φ: Dic15/C10S3 ⊆ Aut C231206C2^3.Dic15480,259
C23.2Dic15 = C60.8D4φ: Dic15/C15C4 ⊆ Aut C231204C2^3.2Dic15480,193
C23.3Dic15 = C60.212D4φ: Dic15/C30C2 ⊆ Aut C23240C2^3.3Dic15480,190
C23.4Dic15 = C2×C60.7C4φ: Dic15/C30C2 ⊆ Aut C23240C2^3.4Dic15480,886
C23.5Dic15 = C22×C153C8central extension (φ=1)480C2^3.5Dic15480,885

׿
×
𝔽